The correct option is B The number of terms in the expansion is 220
Given expansion is (1+a−b+c)9, so
The number of terms
= 9+4−1C4−1= 12C3=12⋅11⋅106=220
The general term in the expansion of (1+a−b+c)9
=9!(k1!)(k2!)(k3!)(k4!)(1)k1(a)k2(−b)k3(c)k4
As, k1+k2+k3+k4=9, so
k1=9−(3+4+1)=1
So, the coefficient of a3b4c
=9!(1!)(3!)(4!)(1!)(a)3(−b)4(c)1=9!(3!)(4!)=9⋅8⋅7⋅6⋅56=2520