wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

For any tϵR and f a continuous function, let I1=1+cos2tsin2txf(x(2x))dx and I2=1+cos2tsin2tf(x(2x))dx, then I1I2 is equal to

Open in App
Solution

I1=1+cos2tsin2txf(x(2x))dx
I1=1+cos2tsin2t(2x)f((2x)(2(2x)))dx.................(baf(x)dx=baf(a+bx)dx)
I1=1+cos2tsin2t(2x)f(x(2x))dx
I1=21+cos2tsin2tf(x(2x))dx1+cos2tsin2txf(x(2x))dx
I1=2I2I1
2I1=2I2I1I2=1

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Integration by Parts
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon