.
Let the angle between them be
θ.
To Prove (i) (→u.→v)2+(→u×→v)2=|→u|2|→v|2
Dot product can be calculated as
→u.→v=|→u||→v|cosθ
On squaring the equation we get
⇒(→u.→v)2=|→u|2|→v|2cos2θ →(1)
Cross product can be calculated as
→u×→v=|→u||→v|sinθ^n ,where ^n is a unit vector.
On squaring the equation we get
⇒ (→u×→v)2=|→u|2|→v|2sin2θ →(2)
Adding equations 1 and 2 we get,
(→u.→v)2+(→u×→v)2= |→u|2|→v|2 (sin2θ+cos2θ)
⇒ (→u.→v)2+(→u×→v)2=|→u|2|→v|2
Hence proved.
To Prove (ii) (→u+1)2+(→v+1)2=(1−→u.→v)2+|→u+→v+(→u×→v)|2
Consider the Right Hand Side of the equation,
(1−→u.→v)2+|→u+→v+(→u×→v)|2=1+(→u.→v)2−2(→u.→v)+→u2+→v2+(→u×→v)2+2(→u.→v)+2→u.(→u×→v)+2→v.(→u×→v)
Note:→u.(→u×→v) and →v.(→u×→v) will be equal to zero as →u×→v is perpendicular to both →u and →v.
=1+(→u.→v)2+→u2+→v2+(→u×→v)2
On rearranging the terms we get
=1+→u2+→v2+(→u.→v)2+(→u×→v)2
=1+→u2+→v2+|→u|2|→v|2
=(1+→u2)(1+→v2)
Hence proved.