For the given differential equation find the general solution.
(1+x2)dy+2xy dx=cotx dx
Given, (1+x2)dy+2xy dx=cotx dx
⇒(1+x2)dy=dx(cotx−2xy)⇒dydx=cotx−2xy1+x2⇒dydx+2xy1+x2=cotx1+x2
On comparing with the form dydx+Py=Q, we get
∴P=2x1+x2 and Q=cotx1+x2∴IF=e∫Pdx=e∫2x1+x2dxLet 1+x2=t⇒2x=dtdx⇒dx=dt2x∴IF=e∫2xt×dt2x⇒IF=elog|t|=t=1+x2 ...(i)
The general solution of the given diffrential equation is given by
y.IF=∫Q×IFdx+C⇒(1+x2)y=∫((1+x2)cotx(1+x2))dx+C⇒(1+x2)y=log|sinx|+C⇒y=log|sinx|(1+x2)−1+C(1+x2)−1