CameraIcon
CameraIcon
SearchIcon
MyQuestionIcon


Question

From the top of a cliff of height $$a$$, the angle of depression of the foot of a certain tower is found to be double the angle of elevation of the top of the tower of height $$h$$. If $$\theta$$ be the angle of elevation then its value is:


A
cos12ha
loader
B
sin12ha
loader
C
sin1a2h
loader
D
tan132ha
loader

Solution

The correct option is D $$\tan^{-1} \sqrt{3 - \dfrac{2h}{a}}$$
h - a = x tan $$\theta$$
a = x tan 2$$\theta$$
(h - a)/a = $$\dfrac{tan \theta}{tan 2\theta} = \dfrac{1 - tan^2 \theta}{2}$$
(h/a) - 1 = $$\dfrac{1 - tan^2 \theta}{2}$$
(h/a) - 1 - 1/2 = $$\dfrac{tan^2 \theta}{2}$$
$$tan^2\theta$$ = 3 - (2h/a)
tan $$\theta$$ = $$\sqrt{3 - (2h/a)}$$
$$\theta$$ = $$tan^{-1} \sqrt{3 - \dfrac{2h}{a}}$$
1048011_1006571_ans_375d54171ff044b09ba0b30f4f2dbfb9.bmp

Mathematics

Suggest Corrections
thumbs-up
 
0


similar_icon
Similar questions
View More


similar_icon
People also searched for
View More



footer-image