CameraIcon
CameraIcon
SearchIcon
MyQuestionIcon


Question

From the top of a cone of base radius $$24$$cm and height $$45$$cm, a cone of slant height $$17$$cm is cut off. What is the volume of the remaining frustum of the cone?


Solution


$${ L }^{ 2 }={ R }^{ 2 }+{ H }^{ 2 }\Rightarrow L=\sqrt { { 24 }^{ 2 }+{ 45 }^{ 2 } } =\sqrt { 2601 } =51cm$$
we know that, $$\triangle OAB\sim \triangle OCD$$, therefore
$$\dfrac { r }{ 24 } =\dfrac { h }{ 45 } =\dfrac { 17 }{ 51 } $$
$$\Rightarrow \quad \dfrac { r }{ 24 } =\dfrac { 17 }{ 51 } \Rightarrow r=\dfrac { 24 }{ 3 } =8cm$$
$$\Rightarrow \quad \dfrac { h }{ 45 } =\dfrac { 17 }{ 51 } \Rightarrow h=\dfrac { 45 }{ 3 } =15cm$$
$$\therefore $$ Height of frustum $$= 45 - 15 = 30cm$$
$$\therefore $$ Volume of frustum = $$\dfrac { 1 }{ 3 } \pi \left( { R }^{ 2 }+{ r }^{ 2 }+Rr \right) h=\dfrac { 1 }{ 3 } \times \dfrac { 22 }{ 7 } \times 30\left( { 24 }^{ 2 }+{ 8 }^{ 2 }+24\times 8 \right) $$
                                    = $$\dfrac { 220 }{ 7 } \times 832=26148.57{ cm }^{ 3 }$$

945639_563992_ans_7a7c56ef142845b8aa7580f504095ea5.png

Mathematics

Suggest Corrections
thumbs-up
 
0


similar_icon
Similar questions
View More


similar_icon
People also searched for
View More



footer-image