Given M=[1123+1223+⋯+1100023] (where [.] denotes greatest integer function), (M - 20) is equal to
∫10001x−23dx=3(x13)10001=3(10−1)=27and∫10001x−23dx<∑999n=1n−23⇒27<∑1000n=1n−23−1(1000)23∴∑1000n=1n−23>27+1100∫10001x−23dx>∑1000n=2n−23⇒27>∑1000n=1n−23−1⇒∑1000n=1n−23<28∴M=[∑1000n=1n−23]=27