The correct option is
D only
II:
K=sin6x+cos6x=(sin2x)3+(cos2x)3=(sin2x+cos2x)(sin4x+cos4x−sin2cos2x)=(sin4x+cos4x−sin2cos2x)=[(sin2x+cos2x)2−2sin2xcos2x−sin2cos2x]=1−3sin2xcos2x ....... (1)
Now, we know that −1≤sin2x≤1
⇒−1≤2sinxcosx≤1
⇒−12≤sinxcosx≤12
⇒0≤|sinxcosx|≤12
⇒0≤|sinxcosx|2≤14 ........ (2)
Multiplying both sides by −3 in (2)
⇒0≥−3|sinxcosx|2≥−34 (as inequality changes when negative number is multiplied)
Now, adding 1 we get,
⇒1+0≥1−3|sinxcosx|2≥1+−34⇒1≥1−3|sinxcosx|2≥14
⇒1≥K≥14 ..... (from (1))
II:
P=sinx+cosx ......... (3)
To find minimum and maximum of the function P, differentiate P w.r.t. x and equate it with 'zero'.
⇒cosx−sinx=0
⇒sinx=cosx
⇒x=π4,5π4,9π4 and so on
Taking x=5π4 for P to be minimum, P=−2√2=−√2
Taking x=9π4 for P to be maximum, P=2√2=√2
⇒−√2≤P≤√2
Hence, only Statement I is true.