I :Range of 2cosx−3cos2x+5 is [0,4].
I. f(x)=2cosx−3cos2x+5
Put y=cosx,yϵ[−1,1]
∴f(y)=−3y2+2y+5
f′(y)=0⇒ for finding maxima or
minima
−6y+2=0
y=13
at y=13,cosx=13
f(y)=2×13−3(19)+5
=13+5=163
at cosx=−1,f(x)=−2−3+5=0
at cosx=+1,f(x)=2−3+5=4
⇒ Range of f(x)ϵ[0,163]
II. 2cosx−5sinx
range ϵ[−√22+52,√22+52]
ϵ[−√29,√29]
Neither I nor II True.