wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If A+B+C=2k, then prove that cos2k+cos2(kA)+cos2(kB)+cos2(kC)=2+2cosAcosBcosC.

Open in App
Solution

cos2xsin2y=cos(x+y)cos(xy)
L.H.S. =2+[cos2ksin2(kA)]+[cos2(kB)sin2(kC)]
=2+cos(2kA)cosA+cos(2kBC)cos(CB)
Put 2kA=B+C and 2kBC=A
=2+cosA[cos(B+C)+cos(CB)]
=2+2cosAcosBcosC.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Pythagorean Identities
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon