If A+B+C=2k, then prove that cos2k+cos2(k−A)+cos2(k−B)+cos2(k−C)=2+2cosAcosBcosC.
Open in App
Solution
cos2x−sin2y=cos(x+y)cos(x−y) L.H.S. =2+[cos2k−sin2(k−A)]+[cos2(k−B)−sin2(k−C)] =2+cos(2k−A)cosA+cos(2k−B−C)cos(C−B) Put 2k−A=B+C and 2k−B−C=A =2+cosA[cos(B+C)+cos(C−B)] =2+2cosAcosBcosC.