Byju's Answer
Standard XII
Mathematics
Global Maxima
If A,B,C ar...
Question
If
A
,
B
,
C
are angles of a triangle, then the minimum value of
tan
2
A
2
+
tan
2
B
2
+
tan
2
C
2
is
Open in App
Solution
Since,
A
+
B
+
C
=
π
,
therefore,
tan
A
2
tan
B
2
+
tan
B
2
tan
C
2
+
tan
C
2
tan
A
2
=
1
⇒
x
y
+
y
z
+
z
x
=
1
...(1)
where
x
=
tan
A
2
,
y
=
tan
B
2
,
z
=
tan
C
2
We know that
(
x
−
y
)
2
+
(
y
−
z
)
2
+
(
z
−
x
)
2
≥
0
⇒
2
∑
x
2
>
2
∑
x
y
⇒
∑
x
2
>
∑
x
y
⇒
∑
x
2
≥
1
[
∵
∑
x
y
=
1
(from(1))
]
⇒
tan
2
A
2
+
tan
2
B
2
+
tan
2
C
2
≥
1
Thus, the minimum value of
tan
2
A
2
+
tan
2
B
2
+
tan
2
C
2
=
1
Suggest Corrections
0
Similar questions
Q.
In a triangle
A
B
C
,
the least value of
tan
2
A
2
+
tan
2
B
2
+
tan
2
C
2
is
Q.
In a
△
A
B
C
,
tan
A
tan
B
tan
C
=
9
.For such triangles, if
tan
2
A
+
tan
2
B
+
tan
2
C
=
λ
then
Q.
In a
△
A
B
C
,
tan
A
.
tan
B
.
tan
C
=
9
. For such triangles, if
tan
2
A
+
tan
2
B
+
tan
2
C
=
k
then:
Q.
The sides
a
,
b
,
c
of
△
A
B
C
,
are in A.P.If
cos
α
=
a
b
+
c
,
cos
β
=
b
c
+
a
,
cos
γ
=
c
a
+
b
then
tan
2
α
2
+
tan
2
γ
2
=
Q.
In any
Δ
A
B
C
, if
cos
θ
=
a
b
+
c
,
cos
ϕ
=
b
a
+
c
,
cos
Ψ
=
c
a
+
b
, where
θ
,
ϕ
and
Ψ
lie between
0
and
π
, prove that
tan
2
θ
2
+
tan
2
ϕ
2
+
tan
2
Ψ
2
=
1
View More
Related Videos
Extrema
MATHEMATICS
Watch in App
Explore more
Global Maxima
Standard XII Mathematics
Solve
Textbooks
Question Papers
Install app