Byju's Answer
Standard XII
Mathematics
Basic Trigonometric Identities
If A+B+C=π,...
Question
If
A
+
B
+
C
=
π
, prove that
(
sin
A
+
sin
B
+
sin
C
)
(
−
sin
A
+
sin
B
+
sin
C
)
(
sin
A
−
sin
B
+
sin
C
)
(
sin
A
+
sin
B
−
sin
C
)
=
4
sin
2
A
sin
2
B
sin
2
C
.
Open in App
Solution
Then L.H.S.
=
[
4
cos
A
2
cos
B
2
cos
C
2
]
[
4
sin
B
2
sin
C
2
cos
A
2
]
⋅
[
4
sin
C
2
sin
A
2
cos
B
2
]
[
4
sin
A
2
sin
B
2
cos
C
2
]
=
4
×
64
(
sin
2
A
2
cos
2
A
2
)
(
)
(
)
=
4
(
2
sin
A
2
cos
A
2
)
2
(
)
(
)
=
4
sin
2
A
sin
2
B
sin
2
C
.
Suggest Corrections
2
Similar questions
Q.
Prove that:
sin
(
A
−
B
)
sin
A
sin
B
+
sin
(
B
−
C
)
sin
B
sin
C
+
sin
(
C
−
A
)
sin
C
sin
A
=
0
Q.
In a triangle
A
B
C
, if
(
sin
A
+
sin
B
+
sin
C
)
(
sin
A
+
sin
B
−
sin
C
)
=
3
sin
A
sin
B
is equal to
Q.
If in a
△
A
B
C
,
(
sin
A
+
sin
B
+
sin
C
)
(
sin
A
+
sin
B
−
sin
C
)
=
3
sin
A
sin
B
,
then angle
C
(in degree) is
Q.
Evaluate
∑
sin
(
C
−
A
)
sin
C
sin
A
if none of
sin
A
,
sin
B
,
sin
C
is zero.
Q.
In
Δ
A
B
C
the sides opposite to angles
A
,
B
,
C
are denoted by
a
,
b
,
c
respectively.
If
(
sin
A
+
sin
B
+
sin
C
)
(
sin
A
+
sin
C
−
sin
B
)
=
μ
sin
A
sin
C
,
where
sin
A
=
a
k
,
sin
B
=
b
k
,
sin
C
=
c
k
then the range of
μ
is
View More
Related Videos
Pythagorean Identities
MATHEMATICS
Watch in App
Explore more
Basic Trigonometric Identities
Standard XII Mathematics
Solve
Textbooks
Question Papers
Install app