If a=^i−2^j+3^k and b=−3^i+^j−^k and r×a=b×a,r×b=a×b, then a unit vector in the direction of r is
If →r×→b=→c×→b and →r.→a=0 where →a=2^i+3^j−^k,→b=3^i−^j+^k and →c=^i+^j+3^k, then →r is equal to
Find →a.(→b×→c), if →a=2^i+^j+3^k,→b=−^i+2^j+^k and →c=3^i+^j+2^k.