If A={−1,0,2,5,6,11},B={−2,−1,0,18,28,108} and f(x)=x2−x−2, find f(A). Is f(A)=B?
Given, f(x)=x2−x−2
Now, f(−1)=(−1)2−(−1)−2=0, f(0)=02−0−2=−2 [1]
f(2)=22−2−2=0, f(5)=52−5−2=18
f(6)=62−6−2=28
and f(11)=(11)2−11−2=108 [1]
∴ f(A)={f(x):x∈A}={f(−1),f(0),f(2),f(5),f(6),f(11)}
={0,−2,0,18,28,108}={−2,0,18,28,108} [1]
We observe that −1∈B, but −1∉f(A)
So, f(A)≠B [1]