The correct option is A 1721
Total possible selection of the integer q is 21.
Given, the roots of the equation x2+qx+3q4+1=0 are real.
∴q2−4(3q4+1)≥0
⇒q2−3q−4≥0
⇒(q−4)(q+1)≥0
⇒q∈(−∞,−1]∪[4,∞) ⋯(i)
Given q∈[−10,10] ⋯(ii)
Using (i) and (ii), we get
q∈[−10,−1]∪[4,10]
⇒ Total number of favourable values of q=17
∴ Required Probability =1721