If cotA=ac,cotB=ca,cotC=a3c,c=a2+a+1, then
A+B=C
B+C=A
C+A=B
None of these
Given that, cotA=ac,cotB=ca,cotC=a3c,c=a2+a+1
As we know,
cot(A+B)=cotAcotB–1cotA+cotB
Put the given values of cotA,cotB,cotC in above formula, we get
cotA+B=acca–1ac+ca=(c–1)(ac+c)a=(c–1)a(a+1)c=(a2+a)a(a+1)c=(a+1)aa(a+1)c=aac=a3c=cotC
∴A+B=C
Hence, Option ‘A’ is Correct.
In △ ABC, if cot A, cot B, cot C be in A. P. then a2,b2,c2 are in