CameraIcon
CameraIcon
SearchIcon
MyQuestionIcon
MyQuestionIcon
Question

If a+ib=(x+i)22x2+1, prove that a2+b2=(x2+1)2(2x2+1)2.

Open in App
Solution

a+ib=(x+i)22x2+1

=x2+i2+2xi2x2+1

=x21+2xi2x2+1

=x212x2+1+i(2x2x2+1)

On comparing real and imaginary parts, we obtain

a=x212x2+1andb=2x2x2+1

a2+b2=(x212x2+1)2+(2x2x2+1)2

=x4+12x2+4x2(2x2+1)2

=x4+1+2x2(2x2+1)2

=(x2+1)2(2x2+1)2

a2+b2=(x2+1)2(2x2+1)2
Hence, proved.

flag
Suggest Corrections
thumbs-up
0
mid-banner-image
mid-banner-image
similar_icon
Related Videos
thumbnail
lock
Jumping to Details
MATHEMATICS
Watch in App