The correct option is B -4/15
Given, ∫sin5xdx=−15sin4xcosx+Asin2xcosx−815cosx+c ....(1)
We have reduction formula for
∫sinnxdx=−cosxsinn−1xn+n−1n∫sinn−2xdx
So, ∫sin5xdx=−cosxsin4x5+45∫sin3xdx
=−cosxsin4x5+45∫(3sinx4−sin3x4)dx
=−cosxsin4x5+35∫sinxdx−15∫sin3xdx
=−cosxsin4x5−35cosx+115cos3x+C
∫sin5xdx=−cosxsin4x5−35cosx+115(4cos3x−3cosx)+C
∫sin5xdx=−cosxsin4x5−45cosx+415(1−sin2x)cosx+C
∫sin5xdx=−cosxsin4x5−815cosx−415sin2xcosx+C
On comparing with (1)
⇒A=−415