The correct option is A (x−32)+√x2−3x+2
We can solve this integral as:
I=∫dx√x2−3x+2⇒I=∫dx√x2−2.32x+2⇒I=∫dx√x2−2.32x+94−94+2⇒I=∫dx√(x−32)2−(12)2Substituting t=x−32,we get dt=dx, then, our integral becomes⇒I=∫dt√t2−(12)2We know that ∫dt√t2−a2=log(t+√t2−a2∣∣+C,Thus, I=log(t+√t2−14∣∣∣+CNow, substituting back t we get,I=log((x−32)+√x2−3x+2∣∣+C
Thus, comparing we get A=(x−32)+√x2−3x+2