The correct option is B √2π/4∫0f(sin2t)costdt
Let I=π/2∫0f(cos2x)cosxdx ⋯(i)
Using property
b∫af(x)dx=b∫af(a+b−x)dx
⇒I=π/2∫0f(−cos2x)sinxdxI=π/2∫0f(cos2x)sinxdx ⋯(ii)
As, f is even (given)
Adding (i) and (ii):
2I=√2π/2∫0f(cos2x)cos(x−π4)dx
Substitute, −x+π4=t,−dx=dt
⇒2I=−√2−π/4∫π/4f(cos(π2−2t))costdt⇒I=√2π/4∫0f(sin2t)costdt[∵f is even]