If f is strictly increasing and positive function, such that xx∫0(1−t)sin(f(t))dt=2x∫0tsin(f(t))dt, where x>0. Then the value of f′(x)cotf(x)+31+x in the domain of f(x) is
A
0
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
0.00
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
0.0
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution
Given expression is xx∫0(1−t)sin(f(t))dt=2x∫0tsin(f(t))dt
Differentiating w.r.t. x using Leibnitz theorem, we get x∫0(1−t)sin[f(t)]dt+x(1−x)sin[f(x)]=2xsin[f(x)] ⇒x∫0(1−t)sin[f(t)]dt=xsin[f(x)](1+x)
Again differentiating w.r.t. x, we get (1−x)sin[f(x)]=(x+x2)cos[f(x)]f′(x)+(2x+1)sin[f(x)] ⇒−3xsin[f(x)]=(x+x2)cos[f(x)]f′(x) ⇒−3xx(1+x)=cot[f(x)]f′(x) ⇒f′(x)cotf(x)+31+x=0