Byju's Answer
Standard XII
Mathematics
Algebra of Limits
If f(x)={ sin...
Question
If
f
(
x
)
=
{
s
i
n
x
,
x
≠
n
π
,
n
ϵ
I
2
,
o
t
h
e
r
w
i
s
e
and
g
(
x
)
=
⎧
⎪
⎨
⎪
⎩
x
2
+
1
,
x
≠
0
,
2
4
,
x
=
0
5
,
x
=
2
, then
l
i
m
x
→
0
g
{
f
(
x
)
}
A
5
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
6
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
7
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
1
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution
The correct option is
C
1
l
i
m
x
→
0
g
{
f
(
x
)
}
=
l
i
m
x
→
0
⎧
⎪
⎨
⎪
⎩
(
f
(
x
)
)
2
+
1
,
f
(
x
)
≠
0
,
2
4
,
f
(
x
)
=
0
5
,
f
(
x
)
=
2
=
l
i
m
x
→
0
⎧
⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪
⎨
⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪
⎩
s
i
n
2
x
+
1
,
s
i
n
x
≠
0
,
2
a
n
d
x
≠
n
π
4
,
s
i
n
x
=
0
a
n
d
x
≠
n
π
5
,
s
i
n
x
=
2
a
n
d
x
≠
n
π
5
,
2
≠
0
,
2
a
n
d
x
≠
n
π
4
,
2
=
0
a
n
d
x
=
n
π
5
,
2
=
2
a
n
d
x
=
n
π
=
l
i
m
x
→
0
{
1
+
s
i
n
2
x
,
x
≠
n
π
5
,
x
=
n
π
=
1
+
s
i
n
2
0
=
1
+
0
=
1
Suggest Corrections
0
Similar questions
Q.
If
f
(
x
)
=
{
s
i
n
x
,
x
≠
n
π
,
n
ϵ
I
2
,
o
t
h
e
r
w
i
s
e
and
g
(
x
)
=
⎧
⎪
⎨
⎪
⎩
x
2
+
1
,
x
≠
0
,
2
4
,
x
=
0
5
,
x
=
2
, then
l
i
m
x
→
0
g
{
f
(
x
)
}
Q.
If f(x) =
{
sin
x
x
≠
n
π
,
n
=
0
,
±
1
,
±
2...
2
,
o
t
h
e
r
w
i
s
e
and g(x) =
⎧
⎪
⎨
⎪
⎩
x
2
+
1
,
x
≠
0
,
2
4
,
x
=
0
5
,
x
=
2
, then
lim
x
→
0
g
{
f
(
x
)
}
is
Q.
f
(
x
)
=
{
sin
x
;
x
≠
n
π
,
n
=
0
,
±
1
,
±
2
,
±
3.....
2
;
o
t
h
e
r
w
i
s
e
and
g
(
x
)
=
{
x
2
+
1
;
x
≠
0
4
;
x
=
0
.
Then
lim
x
→
0
g
(
f
(
x
)
)
is
Q.
Let
f
(
x
)
=
{
sin
x
,
x
≠
n
π
2
,
x
=
n
π
, where
n
ϵ
Z
and
g
(
x
)
=
{
x
2
+
1
,
x
≠
2
3
,
x
=
2
.
Then
lim
x
→
0
g
(
f
(
x
)
)
is
Q.
If f(x) =
x
s
i
n
x
and g(x) =
x
t
a
n
x
where 0<x
≤
1, then in this interval
f
(
x
)
is
View More
Related Videos
Algebra of Limits
MATHEMATICS
Watch in App
Explore more
Algebra of Limits
Standard XII Mathematics
Solve
Textbooks
Question Papers
Install app