Given :
f(x)=sin[tan−1(1−x22x)+cos−1(1−x21+x2)]
Putting x=tanθ
=sin[tan−1(1−tan2θ2tanθ)+cos−1(1−tan2θ1+tan2θ)]
=sin[tan−1(cot2θ)+cos−1(cos2θ)]
=sin[tan−1tan(π2−2θ)+cos−1(cos2θ)]
As 2θ∈(0,π2), so the above expression can be written as
f(x)=sin(π2−2θ+2θ)
f(x)=sinπ2=1
∴f′(x)=0