Let P(x,y) be any arbitrary point on the curve and slope of tangent at this point be dydx
Equation of tangent at
P(x,y) is
Y−y=dydx(X−x)
⇒Xdydx−Y=xdydx−y
Therefore distance from origin = ∣∣
∣
∣
∣
∣
∣∣−xdydx+y√1+(dydx)2∣∣
∣
∣
∣
∣
∣∣
Slope of normal =−1dydx
Equation of normal at P is
Y−y=−1dydx(X−x)
⇒Ydydx−ydydx=−X+x
Therefore distance from origin = ∣∣
∣
∣
∣
∣
∣∣x+ydydx√1+(dydx)2∣∣
∣
∣
∣
∣
∣∣
Now, according to given condition
∣∣∣−xdydx+y∣∣∣=∣∣∣x+ydydx∣∣∣
either −xdydx+y=x+ydydx or xdydx−y=x+ydydx
⇒(x+y)dydx=y−x or (x−y)dydx=x+y
⇒dydx=y−xy+x or dydx=x+yx−y
which are homogeneous differential equations in x and y
Put y=vx
dydx=v+xdvdx
⇒v+xdvdx=v−1v+1 or v+xdvdx=1+v1−v
⇒xdvdx=v−1v+1−v or xdvdx=1+v1−v−v
⇒xdvdx=−v2−1v+1 or xdvdx=1+v21−v
Separating variables and integrating
⇒∫v+11+v2dv=∫−dxx or ∫v−11+v2dv=∫−dxx
⇒∫v1+v2dv+∫11+v2dv=∫−dxx or ∫v1+v2dv−∫11+v2dv=∫−dxx
⇒12ln|1+v2|+tan−1v=−lnx+lnc or 12ln|1+v2|−tan−1v=lnc−lnx
Hence solution will be
12ln|1+v2|+lnx=±tan−1v+lnc
lnx√1+v2c=±tan−1v
x√1+v2=ce±tan−1v
⇒√x2+y2=ce±tan−1y/x