If log35=a and log32=b then log3300=
2(a+b)
2(a+b+1)
2(a+b+2)
(a+b+4)
(a+b+1)
Explanation for the correct option:
Given that log35=a and log32=b
We know that logb(xy)=logb(x)+logb(y)
So, log3300 can be simplified as log33×102
=log332+log3(5×2)2=2log33+2log3(5×2)[∵logb(x)n=nlogb(x)]=2log33+2log3(5)+2log3(2)[∵logb(xy)=logb(x)+logb(y)]=2(1)+2(a)+2(b)[∵logb(b)=1,log3(5)=a,log3(2)=b]=2(a+b+1)
Hence, option(B) i.e. 2(a+b+1), is the correct answer.
In each of the following, determine whether the statement is true or false. If it is true, prove it. If it is false, give an example.
(i) If x ∈ A and A ∈ B, then x ∈ B
(ii) If A ⊂ B and B ∈ C, then A ∈ C
(iii) If A ⊂ B and B ⊂ C, then A ⊂ C
(iv) If A ⊄ B and B ⊄ C, then A ⊄ C
(v) If x ∈ A and A ⊄ B, then x ∈ B
(vi) If A ⊂ B and x ∉ B, then x ∉ A