wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If secθ+tanθ=p, then find the value cscθ.


Open in App
Solution

Given:

secθ+tanθ=p.....(1)

Using Identity, sec2(θ)-tan2(θ)=1 ,

(sec(θ)-tan(θ))(sec(θ)+tan(θ))=1a2-b2=(a+b)(a-b)

(sec(θ)-tan(θ)p)=1...(using(1))(sec(θ)-tan(θ))=1p...(2)

Adding (1) and (2), we get,

sec(θ)+tan(θ)+sec(θ)-tan(θ)=p+1p2secθ=p2+1psecθ=p2+12pcosθ=2pp2+1cos(θ)=1sec(θ)

Finding the value of sin(θ):

sinθ=1-cos2θ[sin2θ+cos2θ=1]sinθ=1-2pp2+12sinθ=p2+12-4p2p2+12sinθ=p2-12p2+12sinθ=p2-1p2+1

Finding the value of csc(θ):

cscθ=1sinθcscθ=p2+1p2-1

Final answer: If secθ+tanθ=p,then csc(θ)=p2+1p2-1


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Spread of the Mutiny
HISTORY
Watch in App
Join BYJU'S Learning Program
CrossIcon