If secθ+tanθ=p, then find the value cscθ.
Given:
secθ+tanθ=p.....(1)
Using Identity, sec2(θ)-tan2(θ)=1 ,
⇒(sec(θ)-tan(θ))(sec(θ)+tan(θ))=1∵a2-b2=(a+b)(a-b)
⇒(sec(θ)-tan(θ)p)=1...(using(1))⇒(sec(θ)-tan(θ))=1p...(2)
Adding (1) and (2), we get,
⇒sec(θ)+tan(θ)+sec(θ)-tan(θ)=p+1p⇒2secθ=p2+1p⇒secθ=p2+12p⇒cosθ=2pp2+1∵cos(θ)=1sec(θ)
Finding the value of sin(θ):
sinθ=1-cos2θ[∵sin2θ+cos2θ=1]⇒sinθ=1-2pp2+12⇒sinθ=p2+12-4p2p2+12⇒sinθ=p2-12p2+12⇒sinθ=p2-1p2+1
Finding the value of csc(θ):
∵cscθ=1sinθ∴cscθ=p2+1p2-1
Final answer: If secθ+tanθ=p,then csc(θ)=p2+1p2-1