If x¯ is the mean of ten natural numbers x1,x2,x3,...,x10, show that:
x1-x¯+x2-x¯+...+x10-x¯=0
Step 1: Find the value of the sum of ten natural numbers
Given,
x¯ is the mean of ten natural numbers x1,x2,x3,...,x10
Here, the number of observations (n) =10
we know that, Mean=SumoftermsNumberofterms
∴x¯=x1+x2+x3+...+x1010
⇒x1+x2+x3+...+x10=10x¯
Step 2: Show that x1-x¯+x2-x¯+...+x10-x¯=0
Consider, LHS
x1-x¯+x2-x¯+...+x10-x¯
=x1+x2+x3+...+x10-x¯-x¯-x¯-x¯-x¯-x¯-x¯-x¯-x¯-x¯
=10x¯-10x¯
=0
=RHS
∴x1-x¯+x2-x¯+...+x10-x¯=0
Hence, showed.