The correct option is A cos−1(2529)
We have, →a⋅→b=abcosθ
⇒cosθ=→a⋅→bab, where θ is angle between →a and →b.
Now, →a⋅→b=axbx+ayby+azbz
⇒→a⋅→b=2×4+3×3+4×2=25
Also,
∣∣→a∣∣=√a2x+a2y+a2z
⇒∣∣→a∣∣=√22+32+42=√29
and,
∣∣∣→b∣∣∣=√b2x+b2y+b2z
⇒∣∣∣→b∣∣∣=√42+32+22=√29
Thus,
cosθ=2529
∴θ=cos−12529