The equation given lines are xcosθ−ysinθ=kcos2θ....(1)
xsecθ+ycscθ=k....(2)
The
perpendicular distance (d) of a line Ax+By+C= 0 from a point(x1,y1)is given by
d=|Ax1+By1+C|√A2+B2
On comparing equation(1) to the general
equation of line i.e; Ax+By+C =0, we obtain
A=cosθ,B=−sinθ, and C=−kcos2θ
It is given that p is the length of the perpendicular from(0,0) to line (1)
∴p=|A(0)+B(0)+C|√A2+B2=|C|√A2+B2 =|−kcos2θ|√cos2θ+sin2θ=|−kcos2θ|......(3)
On
comparing equation(2) to the general equation of line i.e; Ax+By+C=0, we obtain A=secθ,B=cscθ, and C=−k
It is given that q is the length of the perpendicular from (0,0) to line (2)
∴q=|A(0)+B(0)+C|√A2+B2=|C|√A2+B2=|−k|√sec2θ+csc2θ.....(4)
From (3) and (4) we have
p2+4q2=(|−kcos2θ|)2+4{|−k|√sec2θ+csc2θ}
=k2cos22θ+4k2(sec2θ+csc2θ)
=k2cos22θ+4k2{1cos2θ+1sin2θ}
=k2cos22θ+4k2{sin2+cos2θsin2θcos2θ}
=k2cos22θ+4k2sin2θcos2θ
=k2cos22θ+k2(2sinθcosθ)2
=k2cos22θ+k2sin22θ
=k2(cos22θ+sin22θ)=k2
Hence, we proved that p2+4q2=k2