If p,qand r are any real numbers, then
max(p,q)<max(p,q,r)
min(p,q)=(12)[p+q–|p–q|)
max(p,q)<min(p,q,r)
none of these
Explanation for the correct option
If p,q,r are any real numbers then
⇒max(p,q)=p,p>qandq,q>p⇒max(p,q,r)=p,p>q,q,q>r,r,r>p⇒max(p,q)<max(p,q,r)isfalse⇒|p–q|=p–q,p≥qandq–p,p<q⇒(12)(p+q–|p–q|)=(12)(p+q–p+q),p≥qand(12)(p+q+p–q),p<q=q,p≥qandp,p<q⇒(12)(p+q–|p–q|)=min(p,q)
Hence option ‘B’ is the correct answer.