Question

# If pbe a natural number, then prove that $$p^{n \, + \, 1} \, + \, (p \, + \, 1)^{2n \, - \, 1}$$ is divisible by  $$p^2$$ +p + 1 for every positive integer n.

Solution

## Let f (n) = $$p^{p \, + \, 1} \, + \, (p \, + \, 1)^{2n \, - \, 1}$$We have f (1) = $$p^2$$ + p + 1 so that f (1) is divisible by $$p^2$$ + p + 1.Now assume that f (m) is divisible by $$p^2$$ + p + p + 1 i.e.,we assume that$$p^{m \, + \, 1} \, + \, (p \, + \, 1)^{2m \, - \, 1} \, = \, k(p^2 \, + \, p \, + \,1)$$Now f (m + 1) = $$p^{m \, + \, 2} \, + \, p \, (p \, + \, 1)^{2m \, + \, 2 \, - \, 1}$$$$= \, p^{m \, + \, 2} \, + \, +[k(p^2 \, + \, p \, + \, 1) \, - \, p^{m \, + \, 1}](p \, + \, 1)^2$$$$= \, p^{m \, + \, 2} \, - \, (p \, + \, 1)^2 \, p^{m \, + \, 1} \, + \, k(p \, + \, 1)^2 \, (p^2 \, + \, p \, + \, 1)$$$$= \, p^{m \, + \, 1} \, (p \, - \, p^2 \, - \, 2p \, - \, 1) \, + \, k(p \, + \, 1)^2 \, (p^2 \, + \, p \, + , 1)$$$$= \, (p^2 \, + \, p \, + \, 1) \, [k(p \, + \, 1)^2 \, - \, p^{m \, + \, 1}]$$Hence f (m + 1) is divisible by $$p^2$$ + p + 1.$$\therefore$$ By induction, f (x) is divisible by $$p^2$$ + p + 1 for all n $$\epsilon$$ N.Maths

Suggest Corrections
Â
0

Similar questions
View More

People also searched for
View More