Byju's Answer
Standard XII
Mathematics
Integration by Parts
If Φ x =lim n...
Question
If
Φ
(
x
)
=
lim
n
→
∞
x
n
−
x
−
n
x
n
+
x
−
n
,
0
<
x
<
1
,
ϵ
N
, then
∫
(
s
i
n
−
1
x
)
(
Φ
(
x
)
)
d
x
is equal to
A
x
s
i
n
−
1
(
x
)
+
√
1
−
x
2
+
C
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
−
(
x
s
i
n
−
1
(
x
)
+
√
1
−
x
2
)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
x
s
i
n
−
1
x
+
√
1
−
x
2
+
C
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
None of these
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is
B
x
s
i
n
−
1
(
x
)
+
√
1
−
x
2
+
C
We have
ϕ
(
x
)
=
lim
n
→
∞
x
2
n
−
1
x
2
n
+
1
=
1
,
0
<
x
<
1
∴
∫
s
i
n
−
1
x
.
ϕ
(
x
)
d
x
=
∫
s
i
n
−
1
x
d
x
=
[
x
s
i
n
−
1
x
+
√
1
−
x
2
]
+
c
Suggest Corrections
0
Similar questions
Q.
If
Φ
(
x
)
=
lim
n
→
∞
x
n
−
x
−
n
x
n
+
x
−
n
,
0
<
x
<
1
,
ϵ
N
, then
∫
(
s
i
n
−
1
x
)
(
Φ
(
x
)
)
d
x
is equal to
Q.
If
Φ
(
x
)
=
lim
n
→
∞
x
n
−
x
−
n
x
n
+
x
−
n
,
0
<
x
<
1
,
ϵ
N
, then
∫
(
s
i
n
−
1
x
)
(
Φ
(
x
)
)
d
x
is equal to
Q.
If
y
=
x
sin
-
1
x
+
1
-
x
2
, prove that
d
y
d
x
=
sin
-
1
x
Q.
If
y
=
x
sin
−
1
x
√
1
−
x
2
,
prove that
(
1
−
x
2
)
d
y
d
x
=
x
+
y
x
.
Q.
∫
[
x
s
i
n
−
1
x
{
√
(
1
−
x
2
}
−
1
]
dx
View More
Related Videos
Integration by Parts
MATHEMATICS
Watch in App
Explore more
Integration by Parts
Standard XII Mathematics
Solve
Textbooks
Question Papers
Install app