If S=sinπn+sin3πn+sin5πn+⋅⋅⋅ n terms.
Then the value nS is
Given series S=sinπn+sin3πn+sin5πn+⋅⋅⋅+sin(α+(n−1)β).
Comparing the given series with standard sine series
sinα+sin(α+β)+sin(α+2β)+sin(α+3β)+⋅⋅⋅
Here,
α=πn
and β=2πn
Sum of the sine series =sinnβ2sinβ2sin(α+(n−1)β2)
=sin(n×2π2×n)sin(2π2×n)sin(πn+(n−1)2π2n)
=sinπsin(πn)×sin(πn+(n−1)πn)
=0sin(πn)⋅sin(πn+(n−1)πn)
=0
n⋅S=n×0=0