The correct options are
A sinx=p2−1p2+1
B cosx=2pp2+1
C tanx=p2−12p
D secx=p2+12p
secx+tanx=p⋯(1)
We know that,
sec2x−tan2x=1⇒secx−tanx=1secx+tanx⇒secx−tanx=1p⋯(2)
From equation (1) and (2),
2secx=p+1p⇒secx=p2+12p⇒cosx=2pp2+1
And
2tanx=p−1p⇒tanx=p2−12p
Now,
sinx=tanx×cosx=p2−1p2+1