The correct option is A True
Given:sinA=acosB and cosA=bsinB
On squaring and adding, we get
sin2A+cos2A=a2cos2B+b2sin2B
⇒1=a2cos2B+b2sin2B
⇒a2(1−sin2B)+b2sin2B=1
⇒(a2−b2)sin2B=a2−1
⇒sin2B=a2−1a2−b2
⇒1=a2cos2B+b2sin2B
⇒1=a2cos2B+b2(1−cos2B)
⇒(a2−b2)cos2B=1−b2
⇒cos2B=1−b2a2−b2
⇒tan2B=sin2Bcos2B
=a2−1a2−b21−b2a2−b2
=a2−11−b2
and tan2A=a2b2cot2B
=a2b2.1−b2a2−1
⇒(a2−1)tan2A+(1−b2)tan2B=a2b2.(1−b2)+(a2−1)
⇒(a2−1)tan2A+(1−b2)tan2B=a2−b2b2