wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If sinA=acosB and cosA=bsinB then (a21)tan2A+(1b2)tan2B is equal to (a2b2b2).

A
True
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
False
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is A True
Given:sinA=acosB and cosA=bsinB
On squaring and adding, we get
sin2A+cos2A=a2cos2B+b2sin2B
1=a2cos2B+b2sin2B
a2(1sin2B)+b2sin2B=1
(a2b2)sin2B=a21
sin2B=a21a2b2
1=a2cos2B+b2sin2B
1=a2cos2B+b2(1cos2B)
(a2b2)cos2B=1b2
cos2B=1b2a2b2
tan2B=sin2Bcos2B
=a21a2b21b2a2b2
=a211b2
and tan2A=a2b2cot2B
=a2b2.1b2a21
(a21)tan2A+(1b2)tan2B=a2b2.(1b2)+(a21)
(a21)tan2A+(1b2)tan2B=a2b2b2

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Trigonometric Functions in a Unit Circle
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon