If sin A = n sin B, then n−1n+1 tan A+B2 =
We have sin A = n sin B ⇒ n1 = sinAsinB
⇒ n−1n+1 sinA−sinBsinA+sinB = 2cosA+B2sinA−B22sinA+B2cosA−B2
= tan A−B2 cot A+B2
⇒ n−1n+1 tan(A+B2) = tan A−B2.
If sinA=nsinB, then n−1n+1 tanA+B2=?
if sin A=n sin(A +2 B) , prove that
tan(A +B) = 1+n/1-n tan B
If sin A=n sin B, then the value of n−1n+1tanA+B2=