wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If sinθ+sinϕ=a and cosθ+cosϕ=b, (ab, a0, b0) then

A
tanθ+tanϕ=8ab(a2+b2)2+4b2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
cosθcosϕ=(a2+b2)24a24(a2+b2)
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
cos(θ+ϕ)=b2a2b2+a2
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
sin(θ+ϕ)=4ab(a2+b2)+2b2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is C cos(θ+ϕ)=b2a2b2+a2
Given
sinθ+sinϕ=a(1)cosθ+cosϕ=b(2)

2sin(θ+ϕ2)cos(θϕ2)=a2cos(θ+ϕ2)cos(θϕ2)=btan(θ+ϕ2)=abcos(θ+ϕ)=1tan2(θ+ϕ2)1+tan2(θ+ϕ2)cos(θ+ϕ)=1a2b21+a2b2cos(θ+ϕ)=(b2a2b2+a2)sin(θ+ϕ)=2tan(θ+ϕ2)1+tan2(θ+ϕ2)sin(θ+ϕ)=2×ab1+a2b2sin(θ+ϕ)=(2aba2+b2)

Squaring and adding equations (1) and (2), we get
1+1+2cos(θϕ)=a2+b2cos(θϕ)=a2+b222

Now,
cosθcosϕ=12(cos(θ+ϕ)+cos(θϕ))=12(b2a2b2+a2+a2+b222)=(a2+b2)24a24(a2+b2)

tanθ+tanϕ=sinθcosθ+sinϕcosϕtanθ+tanϕ=sin(θ+ϕ)cosθcosϕtanθ+tanϕ=8ab(a2+b2)24a2

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Transformations
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon