Byju's Answer
Standard XII
Mathematics
Cube Root of a Complex Number
If t2 + t +...
Question
If
t
2
+
t
+
1
= 0 then prove that the value of
(
t
+
1
t
)
2
+
(
t
2
+
1
t
2
)
2
+
.
.
.
.
(
t
27
+
1
t
27
)
2
=
54
Open in App
Solution
Here x =
ω
,
ω
2
.
As in last question for x =
ω
5
∑
n
=
27
(
t
n
+
1
t
n
)
2
=
5
∑
n
=
27
(
ω
n
+
ω
2
n
)
2
Now
n
≠
3
p
for 18 numbers from 1 to 27 and n = 3p for 9 numbers from 1 to 27
∴
5
∑
n
=
27
=
18
(
−
1
)
2
+
9
(
2
)
2
=
18
+
36
=
54
The same result will be true for x =
ω
2
Suggest Corrections
0
Similar questions
Q.
If
t
2
+
t
+
1
=
0
,then value of
(
t
+
1
t
)
2
+
(
t
2
+
1
t
2
)
2
+
.
.
.
.
.
.
.
.
+
(
t
27
+
1
t
27
)
2
is equal to
Q.
If
t
2
+
t
+
1
=
0
, then
(
t
+
1
t
)
2
+
(
t
2
+
1
t
2
)
2
+
(
t
3
+
1
t
3
)
2
.
.
.
.
+
(
t
27
+
1
t
27
)
2
is equal to
Q.
If
t
2
+
t
+
1
=
0
, then
(
t
+
1
t
)
2
+
(
t
2
+
1
t
2
)
2
+
(
t
3
+
1
t
3
)
2
.
.
.
.
+
(
t
27
+
1
t
27
)
2
is equal to
Q.
If
t
2
+
t
+
1
=
0
,
then the value of the expression
(
t
+
1
t
)
+
(
t
2
+
1
t
2
)
+
⋯
+
(
t
27
+
1
t
27
)
equals
Q.
If
x
=
√
1
−
t
2
1
+
t
2
and
y
=
√
1
+
t
2
−
√
1
−
t
2
√
1
+
t
2
+
√
1
−
t
2
,
then the value of
d
2
y
d
x
2
at
t
=
0
is given by
View More
Related Videos
Cube Root of a Complex Number
MATHEMATICS
Watch in App
Explore more
Cube Root of a Complex Number
Standard XII Mathematics
Solve
Textbooks
Question Papers
Install app