The correct option is D y=4H(tT)[1−tT]
As we know that for a projectile motion,
Total time of flight, T=2usinθg
Maximum height, H=u2sin2θ2g
Horizontal range, R=u2sin2θg
Now,
HR=u2sin2θ2g×g2u2sinθcosθ
⇒HR=tanθ4
⇒tanθ=4HR
Using maximum height formula we can write that,
u2=2gHsin2θ
Equation of trajectory of projectile gives,
y=(tanθ)x−g2u2cos2θx2
Substituting the value of u2, we get
⇒y=(tanθ)x−gx22(2gHsin2θ)cos2θ
⇒y=(tanθ)x−tan2θ4Hx2
⇒y=4HRx−14H(4HR)2x2 ∵[tanθ=4HR]
⇒y=4HR[x−x2R]
∴y=4H(xR)[1−xR]
So, Option (b) is the correct answer.
The vertical displacement y is,
y=usinθt−12gt2.....(1)
Now, HT=(u2sin2θ2g)(2usinθg)
⇒HT=usinθ4
∴4HT=usinθ
Also, HT2=u2sin2θ2g×g24u2sin2θ
⇒HT2=g8
∴g=8HT2
Substituting usinθ and g in equation (1), we get
y=4HTt−12×8HT2×t2
∴y=4H(tT)[1−tT]
Hence options (b) and (d) are the correct alternatives.