CameraIcon
CameraIcon
SearchIcon
MyQuestionIcon


Question

If the length of a second pendulum is increased $$4$$ %.What will be new time period ?


A
1.06sec
loader
B
1.02sec
loader
C
1.09sec
loader
D
1.55sec
loader

Solution

The correct option is B $$1.02sec$$
$$ \begin{array}{l} \text { Given-  Length of the Second Pendulum increased by 4% } \\ \text { we know That - } \\ \qquad T=2 \pi \cdot \sqrt{\frac{l}{g}}-\text { (1) } \end{array} $$ 
$$ \begin{array}{l} \text { By error analysis method } \\ \text { Taking logarithm in above eq- }  \\ \qquad \log T=\frac{1}{2} \cdot \log (l)+\log \left(\frac{2 \pi}{\sqrt{g}}\right) \end{array} $$ 
$$ \begin{array}{l} \text { difterentiating Both sides } \\ \qquad \frac{d T}{T}=\frac{1}{2} \cdot \frac{d l}{l}=\frac{1}{2} \times 4 \%=2 \%=0.02 \end{array} $$ 
$$ \begin{array}{l} \text { Hence Time period of Pendulum } \\ \qquad T=1+0.02 \mathrm{sec}=1.02 \mathrm{sec} . \end{array} $$

Physics

Suggest Corrections
thumbs-up
 
0


similar_icon
Similar questions
View More


similar_icon
People also searched for
View More



footer-image