If the length of three sides of a trapezium other than base are equal to 20cm, then find the area of trapezium when it is maximum.
Open in App
Solution
Let ABCD be the given trapezium such that AD=DC=BC=20cm. DP and CQ are perpendiculars on AB. △APD≅△BQC.
Let AP=xcm. Then BQ=xcm. By Pythagoras theorem, DP=QC=√400−x2
Let A be the area of trapezium ABCD. Then, A=12(AB+CD)×DP=12(20+20+2x)√400−x2 ⇒A=(20+x)√400−x2 Differentiate w.r.t. x dAdx=√400−x2−x(20+x)√400−x2=400−x2−x2−20x√400−x2=400−2x2−20x√400−x2
To find the critical numbers, dAdx=0 ⇒400−2x2−20x√400−x2=0 ⇒400−2x2−20x=0⇒x2+10x−200=0 ⇒(x−10)(x+20)=0⇒x=10,−20 ⇒x=10 as x>0