If the line y−√3x+3=0 cuts the parabola y2=x+2 at A and B, then PA.PB is equal to [where P≡(√3,0)]
Consider the equation of the line.
y=√3x−3
Consider the equation of the parabola.
y2=x+2
And,
⇒P(√3,0)
Find the intersection points.
(√3x−3)2=x+2
3x2+9−6√3x=x+2
3x2−x(6√3+1)+7=0
⇒x1+x2=6√3+13 ......(1)
⇒x1x2=73 ......(2)
Any point the parabola can be written as,
⇒(x,√x+2)
Let,
A=(x1,√x1+2)
B=(x2,√x2+2)
Therefore,
PA=√(√3−x1)2+(√x1+2)2
⇒PA=√3+x21−2√3x1+x1+2
PB=√(√3−x2)2+(√x2+2)2
⇒PB=√3+x22−2√3x2+x2+2
Therefore,
PA×PB=√(5+x21−(2√3−1)x1)(5+x22−(2√3−1)x2)
PA×PB=43(√3+2)=4(√3+2)3
Hence, this is the required result.