If the point P(x,y) is equdistant from point A(a+b,b−a)&B(a−b,a+b).Provethatbx−ay.
Open in App
Solution
The correct option is PA=PB⇒(x−(a+b))2+(y−(b−a))2=(x−(a−b))2+(y−(a+b))2⇒x2−2x(a+b)+(a+b)2+y2−2y(b−a)+(b−a)2=x2−2x(a−b)+(a−b)(a−b)2+y2−2y(a+b)+(a+b)2⇒−2x(a+b)−2y(b−a)=−2x(a−b)−2y(a+b)⇒−2x(a+b−a+b)−2y(b−a−a−b)=0⇒−2x(2b)−2y(−2a)=0⇒4bx+4ay=0⇒4ay+4bx⇒ay=bx