If the sum of length of the hypotenuse and a side of a right angled triangle is given, then show that if the area of triangle is maximum, then the angle between them is π3.
Let ABC be a triangle with AC = h AB = x and BC = y.
Also, ∠CAB=θ
Let h +x = k
∴cosθ=xh⇒x=hcosθ⇒h+hcosθ=k⇒h(1+cosθ)=k⇒h=k(1+cosθ)Also,Area of △ABC=12(AB.BC)A=12.x.y=12hcosθhsinθ=12h2sinθcos.cosθ=2h24sinθ.cosθ=14h2sin2θSince h=k1+cosθ∴A=14(k1+cosθ).sin2θ⇒A=k24.sin2θ(1+cosθ)2∴dAdθ=k24[(1+cosθ)2.cos2θ2−isn2θ2(1+cosθ).(0−sinθ)(1+cosθ)4]=k24{2(1+cosθ)[(1+cosθ).cos2θ+sin2θ(sinθ)](1+coscosθ)4}=k24.2(1+cosθ)3[(1+cosθ).cos2θ+2sin2θ.cosθ]=k22(1+cosθ)2[(1+cosθ)(1−2sin2θ)+sin2θ.cosθ]=k22(1+cosθ)3[1+csoθ−2sin2θ−2sin2θ]=k22(1+cosθ)3[(1+cosθ)−2sin2θ]=k22(1+cosθ)3[1+cosθ−2+2cos2θ]=k22(1+cosθ)3(cos2θ+cosθ−1)for dAdθ=0,k22(1+cosθ)2(2cos2θ+cosθ−1)=0⇒2cos2θ+cosθ−1=0⇒2cos2θ+2cosθ−cosθ−1=0⇒2cosθ(cosθ+1)−1(cosθ+1)=1⇒(2cosθ−1)(cosθ+1)=0⇒cosθ=12orcosθ=−1⇒θ=π3or θ=2nπ±π∴θ=π3
Again, differentiating w.r.t. θ in eq. (v) . we get
ddθ(dAdθ)=ddθ[k22(1+cosθ)(2cos2θ+cosθ−1)]∴d2Adθ2=ddθ[k2(cosθ−1)(1+cosθ)2(1+cosθ)2]=ddθ[k22.(2cosθ−1)(1+cosθ)2]=k22[(1+cosθ)2.(−2sinθ)−2(1+cosθ).(−sinθ)(2cosθ−1)(1+cosθ)4]=k22[(1+cosθ).[1+cosθ](−2sinθ)+2sinθ(2cosθ−1)(1+cosθ)4]k22[−2sinθ−2sinθ.cosθ+4sinθ.cosθ−2sinθ(1+cosθ)3]k22[−4sinθ−sin2θ+2sin2θ(1+cosθ)3]=k22[sin2θ−4sinθ(1+cosθ)3](d2Adθ2)atθ=π3=k22[sin2π3−4sinπ3(1+cosπ3)]=k22[√32−4√32(1+12)]=k22[−3√3.82.27]=−k2(2√39)
Which is less than zero.
Hence, area of the right angled triangle is maximum when the angle between them is π3