The correct option is D π3
Given circle is x2+y2−2x=15
⇒x2−2x+1+y2=15+1⇒(x−1)2+y2=42
Ellipse is 16x2+11y2=256
For ellipse, equation of tangent at (4cosθ,16√11sinθ) is:
16x(4cosθ)+11y(16√11sinθ)=256⇒x(4cosθ)+11y(1√11sinθ)=16
It touches the circle (x−1)2+y2=42
So, distance of tangent from centre of circle is 4
⇒∣∣
∣∣4cosθ−16√16cos2θ+11sin2θ∣∣
∣∣=4⇒(cosθ−4)2=16cos2θ+11sin2θ⇒4cos2θ+8cosθ−5=0⇒cosθ=12 or cosθ=−52(not possible)
∴θ=2nπ±π3,n∈Z
Hence, possible values of θ are π3,5π3