Question

# If work done in stretching a wire by $$1\ mm$$ is $$2\ J$$, the work necessary for stretching another wire of same material, but with double the radius and half the length by $$1\ mm$$ in joule is -

A
1/4
B
4
C
8
D
16

Solution

## The correct option is D $$16$$\begin{array}{l} \text { Work done }=U=\frac{1}{2} \times \text { stress } x \text { strain } x \text { velume } \\ \qquad \begin{aligned} U &=\frac{1}{2} x Y \times(\text { strain })^{2} \times \text { volume } \\ U &=\frac{1}{2} \times Y \times \frac{(\Delta l)^{2}}{l^{2}} \times A l \end{aligned} \end{array} $$\begin{array}{l} =\frac{1}{2} x Y x(\Delta l)^{2} \times \frac{A}{l}=\frac{1}{2} x y x(\Delta \rho)^{2} x \pi \frac{R^{2}}{l} \\ U=\left(\frac{1}{2} x y \pi x(\Delta l)^{2} x\right) \times \frac{R^{2}}{l} \end{array}$$ $$\begin{array}{l} 2 J=\left[\frac{1}{2} \times y \pi x\left(10^{-3}\right)^{2}\right] \times \frac{R^{2}}{l} \\ U=\left[\frac{1}{2} \times y \pi x\left(10^{-3}\right)^{2}\right] \times \frac{(2 R)^{2}}{\left(\frac{2}{2}\right)} \\ \text { from equation (1) and (2) } \\ U=16 J \end{array}$$Physics

Suggest Corrections

0

Similar questions
View More

People also searched for
View More