The correct option is D −tan−1√x
Let x=tan2θ
For x∈(0,1), we have
θ∈(−π4,0)∪(0,π4)
Now, the expression can be written as
12cos−1(1−x1+x)=12cos−1(1−tan2θ1+tan2θ)=12cos−1(cos2θ)
As 2θ∈(−π2,π2)−{0}
In the given symmetrical interval, we get
cos−1(cos2θ)=⎧⎪
⎪
⎪⎨⎪
⎪
⎪⎩2θ, 2θ∈(0,π2)−2θ, 2θ∈(−π2,0)
Therefore
12cos−1(1−x1+x)=±θ=±tan−1√x