Byju's Answer
Standard XII
Mathematics
Chain Rule of Differentiation
If xy = ex ...
Question
If
x
y
=
e
x
−
y
, then find
d
y
d
x
at
x
=
1
Open in App
Solution
Applying log on both sides
y
l
o
g
x
=
x
−
y
.......(1)
[
∵
log
x
m
=
m
log
x
]
y
log
x
+
y
=
x
⇒
y
=
x
1
+
log
x
When
x
=
1
then
y
=
1
1
+
log
1
=
1
1
+
0
∴
y
=
1
Differentiating equation (1) wrt x
y
x
+
l
o
g
x
d
y
d
x
=
1
−
d
y
d
x
[
∵
(
U
V
)
′
=
U
V
′
+
U
′
V
]
log
x
d
y
d
x
+
d
y
d
x
=
1
−
y
x
d
y
d
x
(
log
x
+
1
)
=
x
−
y
x
d
y
d
x
=
x
−
y
x
(
1
+
l
o
g
x
)
To find
d
y
d
x
at
x
=
1
:
[
d
y
d
x
]
x
=
1
=
1
−
1
1
(
1
+
log
1
)
=
0
1
(
1
+
0
)
=
0
1
=
0
Suggest Corrections
0
Similar questions
Q.
If
x
y
=
e
x
−
y
,
then
the
value
of
dy
dx
at
x
=
e
is
Q.
If
x
y
=
e
x
-
y
,
find
d
y
d
x
.
Q.
If
x
y
=
e
x
−
y
then
d
y
d
x
is
Q.
If
x
y
=
e
x
-
y
,
then
d
y
d
x
is
(a)
1
+
x
1
+
log
x
(b)
1
-
log
x
1
+
log
x
(c) not defined
(d)
log
x
1
+
log
x
2
Q.
If
e
x
+
e
y
=
e
x
+
y
,
prove
that
d
y
d
x
=
-
e
x
e
y
-
1
e
y
e
x
-
1
or
d
y
d
x
+
e
y
-
x
=
0
View More
Related Videos
Basic Theorems in Differentiation
MATHEMATICS
Watch in App
Explore more
Chain Rule of Differentiation
Standard XII Mathematics
Solve
Textbooks
Question Papers
Install app