Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
log1c=logbc
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
logab=logcb
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
logba=logcb
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is Alogcb=logac x(y+z−x)logx=y(z+x−y)logy=z(x+y−z)logz=K(Let),Now,weget−−−−∣∣∣ifbaseisnotgiventhen,applybaseas=10log10x=x(y+z−x)k⇒x=10x(y+z−x)klog10y=y(z+x−y)k⇒y=10y(z+x−y)klog10z=z(x+y−z)k⇒z=10z(x+y−z)kNow,wefindxyyxisequalto......so,xy=[10x(y+z−x)k]y⇒10xy(y+z−x)kyx=[10y(z+x−y)k]x⇒10xy(z+x−y)k∴xy.xy=10xyk(y+z−x+z+x−y)=102xyzk−−−−−−−(i)ifwetake,xzzx...xz=[10x(y+z−x)k]z⇒10zx(y+z−x)kzx=[10z(x+y−z)k]x⇒10zx(x+y−z)k∴xz.zx=10zxk(y+z−x+x+y−z)=102xyzk−−−−−−−(ii)So,(xy.xy)isequalto(xz.zx)andthecorrectoptionisA.