wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If y=(cos1x)2, prove that (1x2)d2ydx2xdydx2=0. Hence find y2 when x=0.

Open in App
Solution

y=(cos1)2dydx=ddx[cos1x]2dydx=2cos1xddx(cos1x)dydx=2cos1x(1)(1x2)d2dx2=ddx(dydx)=ddx[2cos1x(1)]1x2d2ydx2=2ddx(cos1x)×11x2+2cos1xddx[11x2]d2ydx2=(2)(1)1x2+2cos1xddx[11x2]d2ydx2=(2)(1)1x2+xcos1x12(1x2)32.(2x)(1x2)d2ydx2=(1x2)[2(1x2)+(2x)cos1x(1x2)32]=2+cos1x(2x)1x2+xdydx=2×cos1x1x2(1x2)d2dx2xdydxxdydx2=2+cos1x(2x)1x22×cos1(x)1x22=0
Hence proved
y2(x=0)=(d2ydx2)(x=0)=2(102)+(2×0)cos1(10)(102)32=2y2=0whenx=0

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
General and Particular Solutions of a DE
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon